Infinitely many periodic solutions for some second-order differential systems with p(t)-Laplacian
نویسندگان
چکیده
منابع مشابه
Infinitely many periodic solutions for some second-order differential systems with p(t)-Laplacian
* Correspondence: [email protected] School of Mathematical Sciences and Computing Technology, Central South University, Changsha, Hunan 410083, P. R. China Abstract In this article, we investigate the existence of infinitely many periodic solutions for some nonautonomous second-order differential systems with p(t)-Laplacian. Some multiplicity results are obtained using critical point theory. 2...
متن کاملINFINITELY MANY HOMOCLINIC ORBITS OF SECOND-ORDER p-LAPLACIAN SYSTEMS
In this paper, we give several new sufficient conditions for the existence of infinitely many homoclinic orbits of the second-order ordinary p-Laplacian system d dt (|u̇(t)|p−2u̇(t)) − a(t)|u(t)|p−2u(t) +∇W (t, u(t)) = 0, where p > 1, t ∈ R, u ∈ R , a ∈ C(R,R) and W ∈ C(R × R ,R) are no periodic in t, which greatly improve the known results due to Rabinowitz and Willem.
متن کاملInfinitely Many Periodic Solutions for Nonautonomous Sublinear Second-Order Hamiltonian Systems
and Applied Analysis 3 Our main result is the following theorem. Theorem 1.1. Suppose that F t, x satisfies assumptions (A) and 1.7 . Assume that lim sup r→ ∞ inf x∈RN,|x| r |x|−2α ∫T 0 F t, x dt ∞, 1.8 lim inf R→ ∞ sup x∈RN,|x| R |x|−2α ∫T 0 F t, x dt −∞. 1.9
متن کاملExistence of Infinitely Many Periodic Solutions for Second-order Nonautonomous Hamiltonian Systems
By using minimax methods and critical point theory, we obtain infinitely many periodic solutions for a second-order nonautonomous Hamiltonian systems, when the gradient of potential energy does not exceed linear growth.
متن کاملInfinitely Many Homoclinic Solutions for Second Order Nonlinear Difference Equations with p-Laplacian
We employ Nehari manifold methods and critical point theory to study the existence of nontrivial homoclinic solutions of discrete p-Laplacian equations with a coercive weight function and superlinear nonlinearity. Without assuming the classical Ambrosetti-Rabinowitz condition and without any periodicity assumptions, we prove the existence and multiplicity results of the equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boundary Value Problems
سال: 2011
ISSN: 1687-2770
DOI: 10.1186/1687-2770-2011-33